NML Computation Algorithms for Tree-Structured Multinomial Bayesian Networks
نویسندگان
چکیده
Typical problems in bioinformatics involve large discrete datasets. Therefore, in order to apply statistical methods in such domains, it is important to develop efficient algorithms suitable for discrete data. The minimum description length (MDL) principle is a theoretically well-founded, general framework for performing statistical inference. The mathematical formalization of MDL is based on the normalized maximum likelihood (NML) distribution, which has several desirable theoretical properties. In the case of discrete data, straightforward computation of the NML distribution requires exponential time with respect to the sample size, since the definition involves a sum over all the possible data samples of a fixed size. In this paper, we first review some existing algorithms for efficient NML computation in the case of multinomial and naive Bayes model families. Then we proceed by extending these algorithms to more complex, tree-structured Bayesian networks.
منابع مشابه
Calculating the Nml Distribution for Tree-structured Bayesian Networks
We are interested in model class selection. We want to compute a criterion which, given two competing model classes, chooses the better one. When learning Bayesian network structures from sample data, an important issue is how to evaluate the goodness of alternative network structures. Perhaps the most commonly used model (class) selection criterion is the marginal likelihood, which is obtained...
متن کاملParent Assignment Is Hard for the MDL, AIC, and NML Costs
Several hardness results are presented for the parent assignment problem: Given m observations of n attributes x1, . . . , xn, find the best parents for xn, that is, a subset of the preceding attributes so as to minimize a fixed cost function. This attribute or feature selection task plays an important role, e.g., in structure learning in Bayesian networks, yet little is known about its computa...
متن کاملEfficient Computation of NML for Bayesian Networks
Bayesian networks are parametric models for multidimensional domains exhibiting complex dependencies between the dimensions (domain variables). A central problem in learning such models is how to regularize the number of parameters; in other words, how to determine which dependencies are significant and which are not. The normalized maximum likelihood (NML) distribution or code offers an inform...
متن کاملRevisiting enumerative two-part crude MDL for Bernoulli and multinomial distributions (Extended version)
We exploit the Minimum Description Length (MDL) principle as a model selection technique for Bernoulli distributions and compare several types of MDL codes. We first present a simplistic crude two-part MDL code and a Normalized Maximum Likelihood (NML) code. We then focus on the enumerative two-part crude MDL code, suggest a Bayesian interpretation for finite size data samples, and exhibit a st...
متن کاملCalculating the Normalized Maximum Likelihood Distribution for Bayesian Forests
When learning Bayesian network structures from sample data, an important issue is how to evaluate the goodness of alternative network structures. Perhaps the most commonly used model (class) selection criterion is the marginal likelihood, which is obtained by integrating over a prior distribution for the model parameters. However, the problem of determining a reasonable prior for the parameters...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007